Specifically, what is claimed in the US patent is:
1. A method of determining the amount of ink ejected from the
printhead of an inkjet print cartridge that is controlled for
ejecting ink drops, the method comprising the steps of:
- determining the number of ejected drops;
- selecting an average drop weight;
- multiplying the number of ejected drops by the average drop
weight to obtain a gross weight;
- providing a frequency factor relating to the frequency with
which the drops are ejected; and
- adjusting the gross weight by the frequency factor to arrive
at a net weight of the amount of ink ejected.
2. The method claim 1 including the step of adjusting the gross weight
by a temperature factor corresponding to the temperature of the ink
drops that are ejected.
3. The method of claim 1 wherein the selecting step includes the step
of accounting for variations in the average drop weight caused by
the amount of use of the printhead.
4. The method of claim 1 including the step of storing on the
cartridge ink level information that is based upon the net weight
of the amount of ink ejected.
5. The method of claim 4 further including the steps of obtaining from
the cartridge information that corresponds to the weight of the ink
in the cartridge and calibrating a counter to relate increments of
the counter to an incremental amount of the weight of the ink.
6. The method of claim 4 including the step of altering the
information stored on the cartridge to account for ink that
evaporates from the cartridge.
7. The method of claim 1 wherein the printhead is controlled for
ejecting ink drops along a swath that is traversed by the printhead
and that extends from one side of a print medium to another side of
the medium, and wherein the method of claim 1 is carried out for
each of several discrete intervals of the swath.
8. The method of claim 7 wherein the number of drops ejected within an
interval of the swath defines an interval drop density, the method
including the step of selecting the number of swath intervals in a
manner that results in the highest average interval drop density
considering all of the intervals in the swath.
9. The method of claim 7 including the step of determining for each
interval of the swath the average temperature of the printhead as
the printhead traverses the interval.
10. The method claim 7 wherein the providing step includes calculating
for each interval a frequency with which the drops are ejected by
the printhead as the printhead traverses the interval.
11. A method of determining the amount of ink ejected from the
printhead of an inkjet print cartridge that is controlled for
ejecting ink drops as the printhead traverses a swath, the method
comprising the steps of:
- determining the number of ejected drops in each of at
least two intervals of the swath;
- selecting an average drop weight;
- multiplying the number of ejected drops in each interval by
the average drop weight to obtain a gross weight for
each interval;
- providing temperature factors relating to the temperature
of the printhead as the printhead traverses each interval,
thereby to provide a temperature factor associated with
each interval; and
- adjusting the obtained gross weights for each interval by the
associated temperature factors and summing to arrive at a net
weight of the amount of ink ejected within the swath.
12. The method of claim 11 including the steps of:
- providing frequency factors relating to the frequency with which
the drops are ejected as the printhead traverses each interval,
thereby to provide a frequency factor associated with each
interval; and
- adjusting the obtained gross weights for each interval by the
associated frequency factors before summing to arrive at a net
weight of the amount of ink ejected within the swath.
13. The method of claim 11 including the step of establishing a number
of swath intervals by determining the density of drops ejected by
the
printhead within the swath.
14. The method of claim 11 including:
- accounting for ink depletion attributable to evaporation
from the cartridge; and then
- recording the amount of ink remaining in the cartridge.
15. The method of claim 14 wherein the printhead operation heats the
printhead above ambient temperature and wherein the accounting step
includes sensing the temperature of the printhead during a time
that the printhead is not operating so that the sensed temperature
will substantially match ambient temperature.
16. A method of calculating the weight of ink ejected by a printhead
of an inkjet print cartridge as the cartridge traverses a swath,
comprising the steps of:
- dividing the swath into intervals;
- determining for each interval the temperature of the printhead as
the printhead traverses the interval;
- calculating for each interval the weight of the ink ejected as a
function of the determined temperatures; and
- summing the calculated weights.
17. The method of claim 16 wherein the calculating step for one of the
intervals includes:
- determining the number of drops ejected within that interval to
arrive at a gross weight of drops for that interval; and
- adjusting that gross weight by a factor relating to the average
frequency with which the drops are ejected by the printhead
during that interval.
18. The method of claim 17 further comprising the step of adjusting
the gross weight of drops for that interval by a factor relating to
the number of drops that had been ejected from the printhead before
traversing the swath.
19. The method of claim 16 wherein the number of drops ejected in an
interval of the swath area defines a drop density, the method
including the step of selecting the number of swath intervals in a
manner that results in the highest average interval drop density
considering all of the intervals in the swath.
20. The method of claim 16 including the step of storing on the
cartridge information relating to the weight of ink ejected and to
an amount of ink lost by evaporation.
Description
TECHNICAL FIELD
This invention relates to gauging the level of ink in an inkjet print
cartridge by precisely determining the amount of ink that is ejected
from a cartridge during printing.
BACKGROUND AND SUMMARY OF THE INVENTION
An ink-jet printer typically includes one or more print cartridges
that contain ink. In some designs, the cartridge has discrete
reservoirs of more than one color of ink. Each reservoir is connected
by a conduit to a printhead that is mounted to the body of the
cartridge. The reservoir or supply of ink may be carried in the
cartridge or remote from the cartridge. When a remote supply is used,
the ink is delivered from the remote supply to the cartridge by a
flexible tube to fill an intermediate reservoir adjacent to the
printhead.
The cartridge is controlled for ejecting minute drops of ink from the
printhead to a printing medium, such as paper, that is advanced
through the printer. The ejection of the drops is controlled so that
the drops form recognizable images on the paper. The cartridge is
mounted to a carriage that scans across the medium as drops are
ejected.
One can consider the portion of the print medium that is traversed by
a printhead for receiving ink from the print head as a print swath.
Between carriage scans, the paper is advanced so that the next swath
of the image may be printed. Oftentimes, especially for color images,
the carriage is scanned more than once across the same swath. With
each such scan, a different combination of colors or droplet patterns
may be printed until the printed swath is complete.
With thermal-type inkjet printers the printhead includes several
resistors that are selectively driven (heated) with pulses of
electrical current. The heat from each driven resistor is sufficient
to form a vapor bubble in ink that fills an ink chamber that surrounds
the resistor. The rapid expansion of the vapor bubble ejects or
"fires" an ink drop through a nozzle that is associated with the ink
chamber. The chamber is refilled after each drop ejection with ink
that flows into the chamber through a channel that connects with the
conduit to the reservoir ink. Each printhead has numerous chambers and
nozzles.
It is important to properly gauge the amount of ink remaining in a
print cartridge. In this regard, it is best to replace a nearly empty
cartridge with a full or nearly full one before a large (in terms of
ink density) print operation is started. That is, print quality may
suffer if a print cartridge is replaced during a printing task. Also,
the printhead itself can fail and be damaged if it were operated (that
is, driven with current pulses) after the supply of ink was depleted
by an amount such that the ink chambers surrounding the resistors no
longer filled. This printhead-damaging situation is characterized as
"dry firing."
Given the importance of accurately gauging ink levels, there have been
provided in the past numerous attempts to monitor the amount of ink
remaining in a supply or reservoir. For example, an optical sensor may
be positioned near a transparent portion of an ink supply and
configured to produce a signal when the light transmissive
characteristics of that portion change in a manner that indicates the
supply is nearing empty. The signal is converted to a human
perceptible warning or notice ("Low-on-Ink" "Out-of-Ink," etc) for
indicating that the supply should be replaced.
However a low-on-ink or out-of-ink signal is produced, the printer is
usually controlled so that a small amount of ink is reserved in the
supply once an out-of-ink condition is reached. This reserve may be
enough to enable the printer to complete printing of a sheet (rather
than stopping during printing of a sheet) and "limp home" to a service
station carried in the printer. In any event, the reserve is large
enough to ensure that no printhead dry firing occurs.
In one approach to gauging the amount of ink remaining in a supply or
reservoir, the printer controller keeps track of the number of drops
fired from the printhead and periodically updates a memory structure
that initially reflects the amount of ink in a full cartridge. For
example, a new cartridge would be characterized at the time of
manufacture as having a given amount of ink, preferably measured in
units of weight. A printer controller is provided (as by associated
firmware) with this initial weight. As drops are fired, the printer
controller accumulates the drop count and converts that count to a
corresponding weight of expelled ink. This amount is subtracted from
the initial weight of ink in the cartridge, and an appropriate warning
signal is produced when the remaining weight is depleted by an amount
indicting the printer is low on ink or out of ink.
The present invention generally follows the "drop count" approach to
ink level gauging and is directed to a method of making more precise
the relationship between the expelled-drop count and the weight of ink
actually expelled, thereby to provide more accurate ink level gauging.
By making the gauging more precise, the amount of reserve ink (which
can be thought of as a safety factor) can be reduced, which leads to
less wasted ink when a user replaces a cartridge. An attendant
advantage to this is the production of more printed pages per
cartridge.
The present invention may be used to supplement other ink level
gauging approaches (such as the optical monitoring mentioned above),
or as a stand-alone technique for precisely monitoring the level of
ink in the cartridge.
The temperature of an operating printhead can vary considerably as a
swath is printed. This variation in temperature is primarily due to
the amount of ink that is printed (the print density) within the
swath. Thus, when a portion of an image requires lots of ink, the
printhead operating temperature will rise. As the printhead
temperature increases, the weight of each expelled drop (that is, the
"drop weight") also increases. Put another way, temperature changes
from a normal or set point printhead operating temperature will cause
changes in the drop weight that must be accounted for in gauging the
amount of remaining ink. Generally, as the temperature increases, the
drop weight increases.
As one aspect of the present invention, the printhead temperature is
monitored as each swath of the image is printed. Moreover, temperature
variations that occur within each swath are noted so that the
corresponding intra-swath variations in drop weight are factored into
the calculation of a "net" ink drop weight that more closely
approximates the drop weight actually ejected.
The method of the present invention also factors in the effect that
printing frequency has on drop weight. The printing frequency is the
rate with which inks drops are ejected and is measured in cycles, such
as hertz (Hz). Generally, the ejected drop weight decreases as the
printing frequency increases. As with temperature, printing frequency
may vary considerably during printing of a swath. The present
invention accounts for this intra-swath variation of printing
frequency.
At some printing frequencies the effects of temperature changes on
drop weight are much more pronounced than at other printing
frequencies. Conversely, drop weights may not vary significantly with
printing frequency changes within certain ranges of frequencies.
Consequently, it is contemplated that the method of the present
invention may, in some instances, account for only printhead
temperature changes or only frequency changes. Normally, however, both
temperature and frequency will be considered.
As another aspect of the present invention, the determination of
ejected drop weight also accounts for drop weight variations that are
attributable to normal use over the life of the printhead. That is, a
printhead has a useful life that may be measured in tens of millions
of ejected drops and, with other factors being equal, the average drop
weight tends to increase during the life of the printhead. The drop
weight variation over the life of the printhead is considered in the
present invention.
As another aspect of the present invention, the method maintains
information (preferably on the print cartridge) relating to the
difference between the initial weight of a full cartridge and the net
weight of the ink ejected from the cartridge. In other words, the ink
level or amount of remaining ink is maintained in memory and made
available for display to the user of the printer. This ink level is
also adjusted from time to time to account for ink depletion resulting
from evaporation.
The invention is primarily embodied in a printer control algorithm of
a printing system that includes mechanisms (processor, temperature
sensors, drop counters, display, etc) for efficiently performing the
algorithm so that ink level data is continuously and precisely gauged
and made available to the user.
Apparatus and methods for carrying out the invention are described in
detail. Other advantages and features of the present invention will
become clear upon review of the following portions of this
specification and the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram for illustrating print cartridges traversing a
swath that is divided into a number of intervals to facilitate ink
level gauging in accordance with the method of the present invention.
FIG. 2 is a block diagram of a printer system adapted for carrying out
the method of the present invention.
FIG. 3 is a graph illustrating, for one type (color) of ink,
empirically derived relationships between printing frequency and drop
weight, and between printhead temperature and drop weight, which
relationships are used in carrying out the method of the present
invention.
FIGS. 4a and 4B provide a high-level flow diagram of the primary steps
of the method of the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The diagram of FIG. 1 illustrates generally from above, a pair of
inkjet print cartridges C1 and C2 that are mounted to a carriage 20
for reciprocating translational motion across the width of a sheet of
print medium, such as paper 22. As the cartridges are moved,
printheads that are attached to them are operated for selectively
ejecting ink drops to form an image on the paper 22.
The scanning-type printer of interest here prints one swath at a time.
A swath 25 is illustrated in FIG. 1 as the region between the
imaginary, parallel dashed lines 24, 26. Thus, in this exemplary
embodiment, the cartridges C1, C2 are moved by the carriage 20 from
one side 28 of the paper 22 to the other side 30 as ink drops are
ejected from the printheads onto the swath 25.
One or more columns of minute nozzles are formed in the cartridge
printheads. The nozzles are oriented to extend in a direction parallel
to the dimension line 32. One or all of the nozzles in a column of
nozzles may be fired. That is, the resistor associated with that
particular nozzle is heated to eject an ink drop from the surrounding
ink chamber and through the nozzle. Thus, the dimension line 32
defines the swath width over which ink drops may be expelled as the
carriage traverses the medium.
The swath width 32 illustrated in FIG. 1 may also be characterized in
terms of the maximum number of nozzles extending across the width of
the swath, normal to the direction of carriage travel (arrow 34 in
FIG. 1). This characterization is useful for determining the printing
frequency as described more below. The total number of these
"swath-width nozzles" may vary from one model of print cartridge to
another.
For illustrative purposes, two separate cartridges C1, C2 are shown in
the figures. One cartridge, C1, is intended to represent a black-ink
cartridge. The other cartridge, C2, represents a three-compartment
cartridge that holds cyan, yellow, and magenta-colored ink. It will be
appreciated that the present invention may be carried out with a
single cartridge, or with more than two cartridges. For instance, some
color printers use four cartridges at a time, each cartridge carrying
a particular color of ink, such as black, cyan, yellow, and magenta.
In the present description, the term "cartridge" is intended to mean
any such device for storing liquid ink and for printing drops of the
ink to media. Also, the cartridges may be connected to remote sources
of ink that supplement the ink supply that is stored in each
cartridge.
For the purposes of this description, reference often will be made
primarily to one cartridge C1, with the understanding that, unless
otherwise stated, the particulars of the preferred embodiment
(temperature sensing etc) also apply to the other cartridge C2.
As illustrated in the block diagram of FIG. 2, the pertinent aspects
of a printer system for carrying out the present invention includes a
printer controller 40 that comprises a microprocessor 42 (and
associated conventional clock, registers, etc.) and memory 44. In this
embodiment, a computer 50 is connected to the printer and includes at
least a central processing unit 52, printer driver 54, and monitor 56.
Print data corresponding to an image to be printed is transmitted from
the computer 50 to the printer controller 40 in conventional fashion.
The microprocessor 42 processes the print data to produce raster data
that is stored in the printer memory 44.
The print data is transferred to printhead drivers 60 in segments for
conversion to current pulses that selectively drive the resistors in
the printheads to eject ink drops in accord with the print data. In
addition, the microprocessor 42 of the print controller drives a
carriage motor 62, and the ink drop ejection from the printhead
nozzles is coordinated with the scanning motion of the cartridges
across the swath 25.
In accordance with the present invention, each cartridge C1, C2 is
provided with a memory chip 66 that is preferably integrated on the
printhead. In one preferred embodiment, the memory chip includes
non-volatile RAM (NVRAM) and thus includes an EEPROM that may be read
and written to by the printer controller 40 as described more below.
Each cartridge memory chip 66 includes factory-recorded information,
such as cartridge type (model and/or ink color), weight of ink (i.e.,
for a new, full cartridge), date of manufacture, out-gassing or vapor
transmission rate, average ink drop weight when the printhead is new,
and a table or mathematical function that shows expected drop weight
changes over the life of the printhead. Part of the memory chip 66 has
two 8-bit counters for storing with the cartridge the changing ink
level data, as described more below.
The printer memory 44 includes firmware or ROM that stores tables or
mathematical functions relating, for a particular type of printhead,
variations in drop weight to changes in printhead temperature, and
relating variations in drop weight to changes in printing frequency.
The printhead type is read by the controller 40 from the memory chip
66 of an installed cartridge. Other information stored in the printer
memory may include, for various printhead types, the temperature set
point that is considered to be the normal operating temperature for
the printhead.
It will be appreciated by one of ordinary skill in the art that much
of the information stored in the printhead memory chip 66 can
alternatively be stored in the printer memory 44, or vice versa. At
least the printhead type is factory-recorded into the memory chip 66,
however, so that the printer controller can recognize the printhead
type once the cartridge is installed in the printer and thereafter
obtain from printer memory any of the above-summarized information
that is not otherwise carried in the memory chip.
Before turning to a detailed description of the preferred method of
the present invention, reference is made to FIG. 3, which is a graph
illustrating for one type (color) of ink empirically derived
relationships between printing frequency and ink drop weight, and
between printhead temperature and drop weight.
The plotted set of four lines in the upper part of the graph show, for
four different printhead temperatures, how ink drop weight varies for
a given average printing frequency. Thus, at a printing frequency of
10,000 Hz, the average drop weight of this ink will vary from about
4.2 nanograms (ng) if the printhead temperature is 40.degree. C. to
about 5.6 nanograms if the printhead temperature is 65.degree. C. The
lowest plotted curve dW/dT represents this variation in terms of
temperature. Thus, at the 10,000 Hz printing frequency, this ink drop
weight will change by about 0.057 ng for every one degree variation
from a set point temperature, which for this example is 45.degree. C.
Considering the upper four plotted lines along the length of the
graph's abscissa, one can see that above about 10,000 Hz printing
frequency the average drop weight for this ink gradually reduces as
the frequency increases. One can also note that at the high end of the
frequency range the four drop-weight curves converge such that the
effects of temperature differences are minimized.
The just discussed empirically derived relationships between printing
frequency and drop weight, and between printhead temperature and drop
weight, for all ink and printhead types, are preferably reduced to
look-up tables in the printer memory 44 and referred to in carrying
out the method described next.
In accordance with the present invention, ink level gauging of the
cartridges is carried out generally using the "drop count" approach
mentioned above, while making more precise the relationship between
the expelled-drop count and the weight of ink actually expelled. As
one aspect of this precision enhancement, a swath is divided (for
purposes of this method) into a number of intervals. Drop weight
estimates are made for the drops ejected in each interval using
temperature and printing frequency data pertaining to each interval.
The estimates for each interval are summed for the entire swath to
arrive at the overall weight of ink ejected from the print cartridge
to the swath. The stored record of the remaining ink in the cartridge
is then updated to reflect the depletion of ink and, when appropriate,
a low-on-ink or out-of-ink signal is generated for display to the
user.
With reference to the flow chart of FIGS. 4a and 4b, the routine or
method carried out under the control of the print controller 40 is
designated "Update Ink Level Gauge" 100. The routine is normally
carried out once a swath is completely printed, although it can be
called at other times as needed.
A first step 102 of the routine is to update ink level counters to
reflect evaporation loss. Depending on the characteristics of the
cartridge container (its vapor transmission rate) and other factors,
such as the humidity and temperature of the operating environment,
this step may be optional. Preferably, however, this update is
undertaken occasionally, such as once a day or once a week. The number
of days since the last such update (stored in printer memory 44 or
memory chip 66) is multiplied by a characteristic evaporation rate for
the printhead (read from the memory chip 66 for example) to arrive at
an amount of ink (measured in units of weight such as nanograms) lost
from evaporation. A temperature sensor in the printhead (described
below) is consulted while the printhead is not operating (and cooled
to ambient) to provide a signal representing the ambient temperature
for use in the evaporation-loss calculation.
As noted, part of the memory chip 66 is reserved for two 8-bit
counters for storing with the cartridge the changing ink level
information. In a preferred embodiment, the 8 bits of one counter are
calibrated for use as 8 increments or "ticks" of a course ink-level
gauge. For example, for a cartridge that holds 28 grams of ink
("filled weight"), the calibration of the course counter would be 28/8
or 3.5 grams per tick of the counter.
A fine-calibrated 8-bit counter in the memory chip 66 is calibrated by
dividing the filled weight by the number of counter ticks (2.sup.8).
In the 28-gram filled-weight example, this counter would be calibrated
to 28/(2.sup.8) grams per tick.
Another counter is preferably employed in the printer memory 44 and
calibrated for ultra-fine recording of changes in the ink level (i.e.,
weight). In this regard, a 32 bit ultra-fine counter is calibrated by
dividing the filled weight by the number of counter ticks (2.sup.32).
In the 28-gram filled-weight example, this counter would be calibrated
to 28/(2.sup.32) grams per tick.
The counters can be configured to count down from filled-weight values
or count up to record the amount of depleted ink (which is then
subtracted from the filled-weight amount to arrive at a remaining ink
amount or "level." In either case, whenever the ink level gauge (i.e.,
the content of the counters) is to be updated as called for by the
present invention, the ultra-fine counter is provided with the product
of the change in ink weight and the weight-per-tick calibration of
that counter. Each time the ultra-fine counter rolls over, the fine
counter is ticked, and each time the fine counter rolls over the
course counter is ticked.
Upon completion of any ink-level update step, the controller
microprocessor 42 checks the contents of these ink level counters,
compares the counter values with low-ink warning trigger levels, and
presents the result to the user by, for example changing a
multi-bar-type ink level gauge display 76 associated with the printer
system.
It is noteworthy here that ink level tracking is carried out for each
cartridge, and in the case of a color cartridge, such as cartridge C2,
the level of each ink color is also tracked in accordance with the
present invention. The printer memory includes an ultra-fine counter
for each cartridge's supply of ink. Also, the locations and
configurations of the above-described counters for recording these ink
levels are described in terms of a preferred embodiment, although it
is contemplated that any of a number of means can be employed for
recording and maintaining the changes in ink levels.
Returning to FIGS. 4a-b, the illustrated steps 104, 106, and 108 of
that figure concern the process of updating and average drop weight
value that is assigned to each printhead upon manufacture and is
preferably recorded in the printer memory 44 or in the memory chip 66
associated with that printhead. This average drop weight,
DW.sub.PHLIFE is an empirically derived value of the weight (for
example, 5 ng) of an average drop of the ink in a given cartridge when
fired at a given temperature (say, 45.degree. C.) and at a given
printing frequency (say, 10,000 Hz). The average drop weight, however,
varies over the life of a printhead. That is, a printhead has a useful
life that may be measured in tens of millions of ejected drops and,
with other factors being equal, the average drop weight tends to
increase during the life of the printhead.
In one preferred embodiment, the variation in drop weight attributable
to the use of the printhead is reduced to a look-up table that is
consulted by the printer controller each time a new power cycle to the
printer is initiated (step 104) or when a new cartridge is installed
(step 106). The printer memory 44 or printhead memory chip 66 carries
this table as well as a count of the total number of drops fired from
the printhead under consideration. The average drop weight
DW.sub.PHLIFE is then updated 108 (or merely retrieved 110 from memory
when updating is not called for).
The average drop weight DW.sub.PHLIFE is also adjusted for temperature
and printing frequency variations and employed in the calculation to
determine the weight of ink ejected from the cartridge as described
below. Preferably, this calculation is performed, and the ink level
counters (the counters hereafter sometimes collectively referred to as
the "ink level gauge," for convenience) are updated after every swath
is printed.
In accordance with the present invention, the print swath 25 (FIG. 1)
is divided into a number of intervals. Ink weight estimates are made
for the drops ejected in each interval using temperature and printing
frequency data pertaining to each interval. This swath intervals
approach provides a precise estimate of the weight of the ink expelled
in the entire swath.
A number of swath intervals are defined (step 112). In a preferred
embodiment where, for example, the print media is A4 sized paper, six
equal-width intervals may be defined, as illustrated in FIG. 1. The
intervals, designated "n" through "n-5," each have the same length
"d."
Alternatively, the number of swath intervals could be selected in a
manner that results in the highest average interval drop density
considering all of the intervals in the swath. To this end, the print
data could be scrutinized just before the swath is to be printed. A
number of different-sized intervals would be tried, and after each
trial the resulting average print density is determined. The interval
number trial that provided the greatest average print density is then
selected as the interval size.
It is noteworthy here that although the interval size or width "d" is
described as parallel to the carriage direction 34, it is contemplated
that the swath could also be divided into intervals across its width
perpendicular to dimension line 32, or both. In the preferred
embodiment of this invention, a predetermined number of uniform
intervals are used.
As noted, the ejected-drops weight estimates are made for the drops
ejected in each interval (step 114) and later summed for the swath.
Thus, the number of ejected drops are "counted" for each interval "n"
(step 116). That is, the printer controller 40 includes drop counters
72, 74 for maintaining count of the drops fired from respective
cartridges C1, C2. The drop counters 72, 74 do not actually count ink
drops. Rather, the microprocessor 42 directs to these counters a
stream of input pulses corresponding to the current pulses produced
for firing the printhead resistors. Since one current pulse to the
resistor produces one fired drop, the input to the drop counters
matches the number of drops actually fired. The variable DOT.sub.n
represents the number of drops fired for an interval.
The average printing frequency for each interval is also determined to
permit calculation of a factor for adjusting the average drop weight
to reflect the above-described variations in drop weight with
variations in printing frequency. This printing frequency PFREQ is
calculated as:
PFREQ=DOT.sub.n /(#NOZMAX*t.sub.d)
where #NOZMAX is the maximum number of nozzles extending across the
width of the swath ("swath width nozzles") and t.sub.d is the quotient
of the interval length "d" and velocity "V" of the carriage 20 as it
traverses the interval.
Once the printing frequency is determined for that interval, a look-up
table in the printer memory 44 is consulted to determine how the
average drop weight DW.sub.PHLIFE is to be adjusted to account for the
difference between a set point frequency for which the average drop
weight was originally determined and the actual printing frequency
just calculated for that interval. This adjustment is designated as a
frequency factor and assigned variable dW.sub.FREQ (step 118).
The average printhead temperature for each interval is also determined
for use in calculating the factor for adjusting the average drop
weight to reflect the above-described variations in drop weight with
variations in printhead temperature. This average temperature is
determined by the use of a temperature sensor 70 (see FIG. 2) that is
carried on the printhead. Any of a number of temperature sensors can
be used.
In one preferred embodiment, the sensor 70 is a thermal sense resistor
having a resistance that increases with temperature. The thermal sense
resistor is deposited on the printhead in the vicinity of the firing
resistors. The thermal sense resistor is intermittently connected with
a current source, and its resistance, gain adjusted, is measured by
the controller 40 and converted to a corresponding printhead
temperature. Preferably, the analog signal proportional to the
resistance of the thermal sense resistor 70 is converted to a digital
signal by an analog-to-digital converter that is also carried on the
printhead.
The temperature is sampled several times during the printing of the
interval and then averaged. This average temperature value is then
used to reference a look-up table in the controller memory 44 to
determine how the average drop weight DW.sub.PHLIFE is to be adjusted
to account for the difference between the set point temperature for
which the average drop weight was originally determined and the actual
temperature just sensed for that interval. This adjustment is
designated a temperature factor and assigned variable dW.sub.TEMP
(step 120).
The average drop weight DW.sub.INT for each interval is then
determined (steps 122, 124). This calculation can be expressed as:
DW.sub.INT =DOT.sub.N (DW.sub.PHLIFE +dW.sub.FREQ +dW.sub.TEMP).
It will be appreciated that by merely multiplying the number of fired
drops by an average drop weight will yield a "gross" weight of ink
ejected. The average drop weight DW.sub.INT calculated above
represents a refinement or "net" weight of ejected ink that accounts
for the frequency, temperature, and printhead life factors as
discussed earlier.
The average drop weight for the entire swath is then determined as the
sum of these values DW.sub.INT for all intervals (step 126). The ink
level counters (gauge) are then updated as described above (step 128).
The resulting ink level amount is displayed to the user via display 76
(FIG. 2).
In the event that any low-ink triggers or thresholds are crossed when
the ink level is updated (step 130), the gauge display is supplemented
with suitable visual and/or audible warnings that are produced by the
controller 40 (step 132). If an out-of-ink condition is reached,
printing is halted and the cartridge "limps home," as discussed above,
printing its reserve ink to complete the page or swath and reach a
service station in the printer.
With the enhanced accuracy provided by the ink level gauging of the
present invention, a printing system may accurately predict for a user
how many more pages may be printed for a given supply. To this end,
the printer controller records or otherwise statistically determines
the average ink usage per page. This information is compared with
(divided by) the ink level data in the updated counters to obtain an
estimate the number of pages that can be printed before changing the
present supply. This estimate is provided to the user as another
component of the ink level gauge display 76.
Having here described preferred embodiments of the present invention,
it is anticipated that suitable modifications may be made thereto by
individuals skilled in the art within the scope of the invention. For
example, it is contemplated that any of a number of ways could be used
to quantify the temperature or printing frequency factors described
above. Thus, it is intended that the term "factor" means any value
determined by any technique for the purpose of adjusting the average
drop weight to account for changes due to printhead temperature
fluctuations or to firing frequency changes.
The present algorithm would also be called upon when non-printing ink
ejection occurs, such as when ink is fired from the printhead to clear
nozzles while the cartridge is in the printer service station. Also,
the method could be employed with piezoelectric type printheads.
Moreover, it is contemplated that the printer system discussed above
could be part of a facsimile machine, plotter, or any other inkjet
recording device.
Thus, although preferred and alternative embodiments of the present
invention have been described, it will be appreciated by one of
ordinary skill in this art that the spirit and scope of the invention
is not limited to those embodiments, but extend to the various
modifications and equivalents as defined in the appended claims.
* * * * *