Boolean Algebra Help needed

Joined
Feb 6, 2003
Messages
5,788
Reaction score
4
rite hiya

seasons greetings to you all 2005 is now nearly over
looking forward to 2006


just wondering is their any people amongst us that have a good understanding of boolean algebra

im struggling with a little problem
its got to do with boolean algebra and de morgans theorem

ill try my best to express it

but its like this i dont know the answer to it how im supposed to simplfy it.

(A'x + Ax')'

so that would read out
bracket open NOT A TIMES X + A times NOT X bracket close and all of it NOTED or primed.


does anyone have a clue what the answer is?

for instance i know that if it was just (A'x)' = A + x'

i get that but im struggling here cuz its two terms with an addition.


ne help greatly appreciated

many thanks

psd99
 
right got it wooo hoo!

if anyone out there ever wanted to know the answer is

(A'x + Ax')' = (A+x')(A'+x) = A'x'+Ax

this is solved using De Morgan's Theroem!

thanks!
 
**Chris does that thing where his hand flies over his head and makes a whoosing noise, intending to symbolise the fact that he has no idea what the hell that kind of algebra is about** ;)
 
I would like to know ... what use is all that in the real world.

:D
 
muckshifter said:
I would like to know ... what use is all that in the real world.

:D

well.............
What's So Logical About Boolean Algebra?


George Boole believed in what he called the ‘process of analysis’, that is, the process by which combinations of interpretable symbols are obtained. It is the use of these symbols according to well-determined methods of combination that he believed presented ‘true calculus’.

Today, all our computers employ Boole's logic system - using microchips that contain thousands of tiny electronic switches arranged into logical ‘gates’ that produce predictable and reliable conclusions. The basic logic gates comprise of AND, OR and NOT. It is these gates, used in differing combinations, that allow the computer to execute its operations using binary language. Each gate assesses various information (consisting of high or low voltages) in accordance with predetermined rules, and produces a single high or low voltage logical conclusion. The voltage itself represents the binary yes-no, true-false, one-zero concept.
 
christopherpostill said:
**Chris does that thing where his hand flies over his head and makes a whoosing noise, intending to symbolise the fact that he has no idea what the hell that kind of algebra is about** ;)

lol dont worry so did i

i dont like boolean algebra
but ive learnt to love it for a few weeks!
 
Back
Top